Comparative Features of Copper ATPases ATP7A and ATP7B Heterologously Expressed in COS-1 Cells

نویسندگان

  • Yueyong Liu
  • Rajendra Pilankatta
  • Yuta Hatori
  • David Lewis
  • Giuseppe Inesi
چکیده

ATP7A and ATP7B are P-type ATPases required for copper homeostasis and involved in the etiology of Menkes and Wilson diseases. We used heterologous expression of ATP7A or ATP7B in COS-1 cells infected with adenovirus vectors to characterize differential features pertinent to each protein expressed in the same mammalian cell type, rather than to extrinsic factors related to different cells sustaining expression. Electrophoretic analysis of the expressed protein, before and after purification, prior or subsequent to treatment with endoglycosidase, and evidenced by protein or glycoprotein staining as well as Western blotting, indicates that the ATP7A protein is glycosylated while ATP7B is not. This is consistent with the prevalence of glycosylation motifs in the ATP7A sequence, and not in ATP7B. ATP7A and ATP7B undergo copper-dependent phosphorylation by utilization of ATP, forming equal levels of an "alkali labile" phosphoenzyme intermediate that undergoes similar catalytic (P-type ATPase) turnover in both enzymes. In addition, incubation with ATP yields an "alkali stable" phosphoprotein fraction, attributed to phosphorylation of serines. Alkali stable phosphorylation occurs at lower levels in ATP7A, consistent with a different distribution of serines in the amino acid sequence. Immunostaining of COS-1 cells sustaining heterologous expression shows initial association of both ATP7A and ATP7B with Golgi and the trans-Golgi network. However, in the presence of added copper, ATP7A undergoes prevalent association with the plasma membrane while ATP7B exhibits intense trafficking with cytosolic vesicles. Glycosylation of ATP7A and phosphorylation of ATP7B apparently contribute to their different trafficking and membrane association when expressed in the same cell type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum.

Copper is essential for brain metabolism, serving as a cofactor to superoxide dismutase, dopamine-beta-hydroxylase, amyloid precursor protein, ceruloplasmin, and other proteins required for normal brain function. The copper-transporting ATPases ATP7A and ATP7B play a central role in distribution of copper in the central nervous system; genetic mutations in ATP7A and ATP7B lead to severe neurode...

متن کامل

Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b-/- kidney.

Kidneys regulate their copper content more effectively than many other organs in diseases of copper deficiency or excess. We demonstrate that two copper-transporting ATPases, ATP7A and ATP7B, contribute to this regulation. ATP7A is expressed, to a variable degree, throughout the kidney and shows age-dependent intracellular localization. In 2-wk-old mice, ATP7A is located in the vicinity of the ...

متن کامل

Multiple Cu-ATPase genes are differentially expressed and transcriptionally regulated by Cu exposure in sea bream, Sparus aurata.

Copper (Cu) is an essential metal, although in excess is highly toxic due to its redox properties and, therefore intracellular Cu homeostasis is a highly regulated process. Cu-ATPases are pivotal regulatory, proteins of intracellular and bodily Cu homeostasis. Two Cu-ATPases, ATP7A and ATP7B with distinct, functions are found in mammals and herein we report the structure and expression under Cu...

متن کامل

Function and regulation of human copper-transporting ATPases.

Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B fun...

متن کامل

Biochemical characterization of P-type copper ATPases

Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2010